conjetura de Hirsch
En matemáticas, una conjetura es una afirmación que se supone cierta, pero que no ha sido probada ni refutada hasta la fecha. Una vez se demuestra la veracidad de una conjetura, esta pasa a ser considerada un teorema de pleno derecho y puede utilizarse como tal para construir otras demostraciones formales.
Warren Hirsch enunció en 1957 su conjetura, en la que establecía un límite determinado para las conexiones entre los lados de un poliedro (cuerpos en tres dimensiones y con los lados planos, como un cubo) o de una red.
Los poliedros tienen las aristas, que son los lados de las caras, y los vértices, el lugar donde se juntan tres o más caras. Un grafo es la conexión o recorrido entre las aristas, y se puede comparar a las posibles conexiones de una red de metro.
Pero en matemática pura y en aplicaciones reales los "poliedros" que aparecen no tienen tres, sino miles o hasta millones de dimensiones.
En estos casos se recurre a una técnica de optimización que es la programación lineal, que tiene el objetivo de organizar lo mejor posible una cantidad de recursos para obtener el mejor rendimiento.
La programación lineal recurre para ello a un algoritmo (una serie de instrucciones) denominado símplex, que busca un vértice óptimo recorriendo las aristas de un poliedro que representa a todas las soluciones posibles.
La importancia de este algoritmo es tal que en el año 2000 fue incluido entre los 10 principales algoritmos más trascendentales del siglo XX en el "top ten" que elaboró la revista 'Computing in Science and Engineering'.
Lo que hacía la conjetura de Hirsch es establecer un límite máximo a las dimensiones del diámetro de los poliedros, y por tanto, del grafo, y, en consecuencia, a la complejidad del método del símplex empleado en la programación lineal.
Y lo que ha conseguido este profesor cántabro es lo que se conoce como "violar" la conjetura, es decir, contradecirla, aunque sólo sea al elevar su límite en un 3% y fijar poliedros "un poco más grandes".
Pero tal y como explica a Europa Press este matemático que cumplirá 42 años el viernes, la principal consecuencia es que se ha "roto un límite psicológico", con lo que a partir de ahora se "abre la veda" para que otros científicos traten de buscar otros límites aún mayores. El límite máximo se convierte, pues, en uno mínimo.
TRABAJO E INSPIRACIÓN
Francisco Santos, director del Centro Internacional de Encuentros Matemáticos (CIEM) de Castro Urdiales, lo ha conseguido con un poliedro concreto, que tiene 86 caras y 43 dimensiones. Llegar hasta él ha sido una mezcla de "trabajo e inspiración".
El trabajo lo inició a finales del año 2007, cuando se encontraba de año sabático en la Universidad de California. En una visita anterior, en 2002, el profesor Victor Klee, uno de los principales investigadores de esta conjetura y fallecido hace tres años, le retó a solucionarlo. A partir de entonces, empezó a "darle vueltas" en la cabeza a las posibilidades de refutar este teorema.
A este investigador que en sus ejemplos siempre suele recurrir a comparaciones con el tráfico aéreo o los transportes la inspiración le vino precisamente en avión, cuando volvía de París a Bilbao, en uno de esos momentos en que "otros hacen sudokus".
Después, empezó a "explorar" la idea, le hizo unos "ajustes" y, finalmente, la formuló de modo que ha logrado probar que el límite establecido por Hirsch se puede superar.
Santos quería presentar este hallazgo el próximo mes de julio en una conferencia en Seatle (Estados Unidos) centrado justo en la figura de Victor Klee, el profesor que con su reto le animó a solucionar la conjetura.
Pero el "revuelo" que ha ocasionado su descubrimiento, del que ahora mismo se hacen eco los 'blogs' especializados en matemáticas y ya ha sido incorporado a la definición de la conjetura en la edición inglesa de la Wikipedia, ha acelerado las cosas.
Y ahora este profesor que imparte la asignatura de Topología a alumnos de cuarto curso en la carrera de Matemáticas en la Facultad de Ciencias iniciará un recorrido en respuesta a las invitaciones que ha empezado a recibir, y que le llevarán a seminarios y conferencias en París, Zurich, Lausana y Portugal.
Warren Hirsch enunció en 1957 su conjetura, en la que establecía un límite determinado para las conexiones entre los lados de un poliedro (cuerpos en tres dimensiones y con los lados planos, como un cubo) o de una red.
Los poliedros tienen las aristas, que son los lados de las caras, y los vértices, el lugar donde se juntan tres o más caras. Un grafo es la conexión o recorrido entre las aristas, y se puede comparar a las posibles conexiones de una red de metro.
Pero en matemática pura y en aplicaciones reales los "poliedros" que aparecen no tienen tres, sino miles o hasta millones de dimensiones.
En estos casos se recurre a una técnica de optimización que es la programación lineal, que tiene el objetivo de organizar lo mejor posible una cantidad de recursos para obtener el mejor rendimiento.
La programación lineal recurre para ello a un algoritmo (una serie de instrucciones) denominado símplex, que busca un vértice óptimo recorriendo las aristas de un poliedro que representa a todas las soluciones posibles.
La importancia de este algoritmo es tal que en el año 2000 fue incluido entre los 10 principales algoritmos más trascendentales del siglo XX en el "top ten" que elaboró la revista 'Computing in Science and Engineering'.
Lo que hacía la conjetura de Hirsch es establecer un límite máximo a las dimensiones del diámetro de los poliedros, y por tanto, del grafo, y, en consecuencia, a la complejidad del método del símplex empleado en la programación lineal.
Y lo que ha conseguido este profesor cántabro es lo que se conoce como "violar" la conjetura, es decir, contradecirla, aunque sólo sea al elevar su límite en un 3% y fijar poliedros "un poco más grandes".
Pero tal y como explica a Europa Press este matemático que cumplirá 42 años el viernes, la principal consecuencia es que se ha "roto un límite psicológico", con lo que a partir de ahora se "abre la veda" para que otros científicos traten de buscar otros límites aún mayores. El límite máximo se convierte, pues, en uno mínimo.
TRABAJO E INSPIRACIÓN
Francisco Santos, director del Centro Internacional de Encuentros Matemáticos (CIEM) de Castro Urdiales, lo ha conseguido con un poliedro concreto, que tiene 86 caras y 43 dimensiones. Llegar hasta él ha sido una mezcla de "trabajo e inspiración".
El trabajo lo inició a finales del año 2007, cuando se encontraba de año sabático en la Universidad de California. En una visita anterior, en 2002, el profesor Victor Klee, uno de los principales investigadores de esta conjetura y fallecido hace tres años, le retó a solucionarlo. A partir de entonces, empezó a "darle vueltas" en la cabeza a las posibilidades de refutar este teorema.
A este investigador que en sus ejemplos siempre suele recurrir a comparaciones con el tráfico aéreo o los transportes la inspiración le vino precisamente en avión, cuando volvía de París a Bilbao, en uno de esos momentos en que "otros hacen sudokus".
Después, empezó a "explorar" la idea, le hizo unos "ajustes" y, finalmente, la formuló de modo que ha logrado probar que el límite establecido por Hirsch se puede superar.
Santos quería presentar este hallazgo el próximo mes de julio en una conferencia en Seatle (Estados Unidos) centrado justo en la figura de Victor Klee, el profesor que con su reto le animó a solucionar la conjetura.
Pero el "revuelo" que ha ocasionado su descubrimiento, del que ahora mismo se hacen eco los 'blogs' especializados en matemáticas y ya ha sido incorporado a la definición de la conjetura en la edición inglesa de la Wikipedia, ha acelerado las cosas.
Y ahora este profesor que imparte la asignatura de Topología a alumnos de cuarto curso en la carrera de Matemáticas en la Facultad de Ciencias iniciará un recorrido en respuesta a las invitaciones que ha empezado a recibir, y que le llevarán a seminarios y conferencias en París, Zurich, Lausana y Portugal.
Comentarios
Publicar un comentario